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Abstract

The differential quadrature method (DQM) is applied to computation of the eigenvalues of small amplitude free
vibration for thin-walled curved beams including a warping contribution. Natural frequencies are calculated for single­
span, curved, wide-flange uniform beams having a range of nondimensional parameters representing variations in
warping stiffness, torsional stiffness, radius ofcurvature, included angle of the curve, polar mass moment of inertia, and
various end conditions. Results are compared with existing exact and numerical solutions by other methods for cases in
which they are available. It is found that the DQM gives good accuracy even when only a limited number of grid points
is used. In addition, results are given for a cantilever beam not previously considered for this problem. Finally,
parametric results are presented in dimensionless form.
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1. Introduction

Horizontally curved beams are used frequently in
highway bridge structures. Curved alignments of
highway bridges and interchanges have been ne­
cessary for the smooth dissemination of traffic in
large urban areas. The construction cost and time of
curved beams associated with the substructure have
been found to be significantly reduced by the use of
curved beams. Furthermore, the construction time is a
factor of immense importance in the selection of a
suitable structural system where the construction site
needs to be used for other operations during the
construction period described by Kang and Yoo
(1994). Owing to their importance in many fields of
technology and engineering, the vibration behavior of
a thin-walled curved beam has been the subject of a
large number of investigations. Despite of a number
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of advantages, a curved member behaves in an
extremely complex manner as compared to a straight
member, CL'1d practicing engineers have often been
discouraged by the complexity because of the initial
curvature. However, the mathematical difficulties
associated with curved members have been largely
overcome with the application of digital computers
and the development of numerical methods. Solutions
of relevant differential equations have traditionally
been obtained by the standard Rayleigh-Ritz, finite
difference, or fmite element methods (FEM).

The early investigators into the in-plane vibration
of rings were Hoppe (1871) and Love (1944). Love
(1944) improved on Hoppe's theory by allowing for
stretching of the ring. Lamb (1888) investigated the
statics of a curved bar with various boundary
conditions and the dynamics of an incomplete free­
free ring of small curvature. Den Hartog (1928) used
the Rayleigh-Ritz method for fmding the lowest
natural frequency of circular arcs with clamped ends,
and his work was extended by Volterra and Morell
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Fig. I. Coordinate system for thin-walled curved beam.

the free vibration behavior of a single-span, curved,
wide-flange beam including a warping contribution
but neglecting the transverse shearing deformation.
The frequencies are calculated for the member over a
range of nondimensional parameters representing
variations in the warping stiffness, torsional stiffness,
radius of curvature, included angle of the curve, and
polar mass moment of inertia. The differential equa­
tions used to model the elastic behavior of the beam,
derived by Vlasov (1961), are based on the assump­
tion that the cross-sectional shape is constant along
the entire length of the member and doubly symmetric;
i.e., the shear center and centroid coincide. Various
boundary conditionsare considered.Numeri-cal results
are compared with existing exact solutions and nume­
rical solutions by the Rayleigh-Ritz and the FEM.

2. Governing differential equations

The uniform curved beam considered is shown in
Fig. I. A point on the centroidal axis is defined by the
angle e, measured from the left support. The tan­
gential and radial displacements of the beam axis are
wand u, respectively. Here, v is the displacement at
right angle to the plane of the beam, R is the radius of
the centroidal axis, and t/J is the angular rotation of a
cross section of the principal axes about the tangential
axis. These displacements are considered to be
positive in the directions indicated. A mathematical
study of the out-of-plane vibration of the curved beam
of small cross section is carried out starting with the
basic equations of motiongiven by Ojalvo (1962). If
the effects of rotatory inertia, warping, and shear
deformation are neglected, the differential equation
governing the coupled twist-bending vibration of the
thin curved beam can be written as

(1961) for the vibration of arches having center lines
in the form of cycloids, catenaries, or parabolas.

Out-of-plane vibrations of complete and incom­
plete rings have been the subject of interest for
several research workers. Ojalvo (1962) obtained the
equations governing three-dimensional linear motions
of elastic rings and results for generalized loadings
and viscous damping using classical beam theory
assumptions for the clamped ends. Culver (1967) and
Shore and Chaudhuri (1972) studied the free vibration
of horizontally curved beams using closed-form
solutions of the equations of motion. Tan and Shore
(1968) calculated the dynamic response of a single­
span curved beam to moving loads. Chaudhuri and
Shore (1977) studied the free vibration of hori­
zontally curved beams using the finite element me­
thod. Snyder and Wilson (1992) calculated the free
vibration frequencies of continuous horizontally cur­
ved beams using a non-explicit closed-form solution
ofthe partial differential equations ofmotion.

The differential quadrature method (DQM) is a
numerical technique of rather recent origin, which by
its continually growing applications in a variety of
problems of engineering and physical sciences, is a
competing alternative to the conventional numerical
techniques for the solution of initial and boundary
value problems. By formulating the quadrature rule
for a derivative as an analogous extension of qua­
drature for integrals, Bellman and Casti (1971) pro­
posed the DQM as a new technique for the numerical
solution of initial value problems of ordinary and
partial differential equations. It was applied for the
first time to the static analysis of structural com­
ponents by lang et al. (1989). The versatility of the
DQM to engineering analysis in general and to
structural analysis in particular is becoming increa­
singly evident by the number of related publications
in recent years. Some recent works (Malik and Bert,
1994; Malik and Civan, 1995) have focused on the
assessment of the numerical accuracy and computa­
tional efficiency of the DQM. It has been shown that
in both these respects the DQM stands out in
comparison to the conventional numerical solution
techniques of the finite difference and [mite element
methods. Recently, Kang and Han (1998) applied the
method to classical and shear deformable theories of
circular curved beams, and Kang and Kim (2002)
studied the extensional vibration analysis of curved
beams using the DQM.

In the present work, the DQM is used to analyze
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where each prime denotes one differentiation with
respect to the dimensionless distance coordinate
X=BIO o, in which 0 0 is the opening angle of the mem­

ber.
Now the following dimensionless parameters are

introduced:

where G is the shear modulus, K r is the Saint-Venant

torsion constant, I, is the area moment of inertia of the
cross section, E is the Young's modulus of elasticity,
and m is the mass per unit length.

The differential equations governing the thin­
walled curved beam including the rotatory inertia and
the warping contribution but neglecting the shear
deformation can be written as (Snyder and Wilson,

1992)

Thus, one can rewrite Eqs. (6) and (7) ill non­

dimensional form as

The following boundary conditions are taken for
simply supported ends (Tan and Shore, 1968): (a) no
vertical deflection; (b) no torsional rotation; (c) no
bending moment; and (d) no bimoment. The bending
moment and the bimoment of the beam can be written

as

El a'u _ GKT azu El, + GK,. a'¢
x az' RZ az' R az'

azu
+m-=O

at'
_ Elx + GKT a'u _ GK a'¢

R az' T az'
+E1,n.=0

R' 'I'

(El", + El ) a'u _ GKr a'u + El", a'¢
R' 'az' R' az' R az"

_ El, + GKT a'¢ + m a'u = 0
R az' at'

El". a'u El +GK a'u a"n., r +El-'I'
R az' R az' '" az'

a'¢ El, ' a'¢
-GKr-+-'¢+mr--=O

az' R' dt'

(I)

(2)

(3)

(4)

C; = r I R, C=GK,.I(El,), D =1", 1(1,R2),

(ij = (m(Re,)' I(El,»'12 OJ

(l+D)V/V -e~cv"+Ri5<I>lv

- Re:(l + (7)<1>"- (ij'V = 0

_l_DViV _ e: (I+C)V,.+J..-i5<I>1V
RC;' RC;' C;2

n' ,')"
U o C-'" " U o '" -2", - 0-- -v +--v-OJ-v-
C;' C;'

(8)

(9)

(10)

where 1" is the warping constant, and r is the polar
radius of gyration.

To find the corresponding free vibration fre­
quencies, the following normal-mode solutions are
assumed:

M =El (1..._ d'U) B =-si (d
2

¢ +~ dIu) (II)
"R dz"'" ,.. dz' R dz:

For clamped end v, ¢, dvldz, andrequal zero where
r represents the warping as defined by Vlasov (1961).

It can be written as

The following boundary conditions are taken for
free ends: (a) no bending moment; (b) no bimoment;

(c) no torsional moment; and (d) no transverse shear
force.

The torsional moment T and the transverse shear

force Qof the beam can be written as

u(z,t) = V(z)sin at, ¢(z,t) = <1>(z)sin at (5)

Replacing z by RB and using Eq. (5), one can
rewrite Eqs. (3) and (4) as

E( V" GKr V" ta; <1> IV

(-+EI)------+---
RZ 'R'e' R' R'e' R s'o:

o 0 0 (6)
El, + GKT <1>" _ ma/V = 0

R R'e~

I dv d!/J
r(z) = -(--+-)

R dz dz
(12)

El" _V'" _ El +GK V" <1>/V, ,. +El --
R R'Bo" R R'B,2 IV «o;

<1>" El "- GK --+-' <1> - mr-ar<1> = 0
t R'e~ R'

(7)

T=GK (d¢ + dv )-El (d
J

¢ + d'v)
r dz Rdz '" dz' Rdz'

Q=I.-+ aM,
R dZ

(13)
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where Bij and Dij are the weighting coefficients for the
second- and the fourth-order derivatives, respectively,
along the dimensionless axis.

The boundary conditions for simply supported ends,
given by Eq. (14), can be expressed in differential
quadrature form as follows:

The boundary conditions for simply supported,
clamped, and free ends are, respectively

V=<1>=V"=<1>"=O (14)

V = <1> = V' = <1>' = 0 (15)
V" V" - V' - <1>'" V'"

<1>-- = -<1>"-- = C(<1>'+~) - D(-+-)
Ra: R R a: Ra:

<1>' VIII - V' _ <I>1If V III

= - ---+ C(<1>'+~)- D(-+-)
R R2a: R a: Ra:

=0 00

3. Differential quadrature method

From a mathematical point of view, the application
of the differential quadrature method to a partial
differential equation can be expressed as follows:

L{f(X)},=IW,jf(xj) for i,j=I,2, .....,N (17)
}=:I

N ,v

(l + D)L Dij~ - a:CLBijVj
}"'( I=I

_ N _ N

+RDLD;j<1> j - Ra:(l + C) LBij<1> j
}:::I )==1

-Ci?V, = 0
1 _ N 0' _ ,v

-D"DY __°_(1+ C)" BV
R~2 ~ If 1 Re2 ~ 1/ i

1 _N 02_ N

+-D" DcD. --"-C" BcD;:2 L.,gJ,t:2 L.,gj
~ j=l S I=4

a; m -2m _ 0+-"",-(.()"".-
~2' ,

(20)

(21)

where L denotes a differential operator, Xj are the
discrete points considered in the domain,f(xj) are the
function values at these points, Wij are the weighting
coefficients attached to these function values, and N
denotes the number of discrete points in the domain.
This equation, thus, can be expressed as the deriva­
tives of a function at a discrete point in terms of the
function values at all discrete points in the variable
domain (Kang and Han, 1998).

The general form of the functionf(x) is taken as

(22)
where S denotes a very small dimensionless distance
measured from the boundary ends ofthe member.

The boundary conditions for clamped ends, given
by Eq. (15), can be expressed in differential quadra­
ture form as follows:

V =0 and cD =0N ,II

N V

LB('v_')j~ = 0 and LB('v_')j<1>j = 0
;"'1 j=J

at X=O+o

at X=l-o

at X=I

at X=Oand cD, =0

and f,B2jcDj =0
j=1

N

LB2j~ =0
)=1

(18)!,(X)=X'-' for k=I,2, ....,N

If the differential operator L represents an n'h

derivative, then

f,~v-')J~ = 0 and f,~v-,);<1>J = 0
;-=1 i=!

v

LW,;X;-l = (k -I)(k - 2)·· ·(k - n)x:-n
- '

)"'1

for i.k = 1,2,....,N

(19)
i=1

and cD, =0

and f, A,} cD} = 0
i=l

at X=O

at X=O+o

at X=l-o

(23)

The mixed boundary conditions for one simply
supported and one clamped end, given by Eqs. (14)
and (15), can be expressed in differential quadrature

form as follows:

This expression represents N sets of N linear
algebraic equations, giving a unique solution for the
weighting coefficients, Wij, since the coefficient
matrix is a Vandermonde matrix, which always has an
inverse as described by Hamming (1973).

v =0 and cD =0IV N at X=I

4. Application

Applying the differential quadrature method to Eqs.
(9) and (10) gives

1';=0
N

LB2j~ =0
/=1

and <1>, =0

and f,B2J<1>J =0
j=1

at x=o

at X=O+o
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VI" =0 and <D, =0 at X=1

v .V

LA(.v-l)j~ =0 and L~N-I)j<Dj =0 at X=1-0
j~l )=1

The frequency parameter OJ is evaluated for the

case of a single-span, horizontally curved, thin-walled

beam over a range of nondimensional parameters

representing variations in warping stiffness, torsional

stiffness, radius of curvature, included angle of the

curve, and polar mass moment of inertia with various

boundary conditions.
The first example considered here has C= 0.05

and 2.00, and ; =0.005 and 0.020. Theses values
were selected to match upper and lower limits for
elevated guideways reported by Wilson et al. (1985).
The parameter D is allowed to vary from 0 to 0.1
(Snyder and Wilson, 1992).

Table I presents the results of convergence studies
relative to the number of grid point N and the 0
parameter with 00 =15° and 60°. The data show that
the accuracy of the numerical solution increases with
increasing N. Then, numerical instabilities arise if N
becomes too large (possibly not greater than 19). The
optimal value for N is found to be 11-15, which is
obtained from trial-and-error calculations. Table I
also shows the sensitivity of the numerical solution to
the choice of t5. The solution accuracy decreases due
to numerical insta-bilities if 0 becomes too big
(possible not greater than 0.00 I). The optimal value
for ois found to be IxIO·6_lxlO·8

. The convergence

and the accuracy of the quadrature solutions depend
largely on the accuracy of the weighting coefficients
obtained by the number of gird points and the
spacingof grid points. From the above analysis, the
numerical results of convergence and accuracy are
fairly good when the results are computed with II
discrete points along the dimen-sionless X-axis with <5
=lxlO-6

. It is observed that the maximum difference
between the exact and the DQM solutions is less than
0.1 %. Subsequently, 11 discrete points along the
dimensionless X-axis with <5=lxIO-6 will be used in

the following analysis.
In Tables 2 and 3, the exact solutions by Culver

(1967) are compared with those by the DQM for the
case of both ends simply supported. It is seen that
excellent agreement is achieved between the DQM
solutions and the analytical solutions. The available
numerical results are also utilized for evaluating the
accuracy of the DQM in the solution of this problem.
Culver (1967) determined the fundamental natural
frequency parameters of the member using the
Rayleigh-Ritz method for the cases of clamped ends
and mixed simply supported-clamped ends. The
results are summarized in Tables 4--7. From Tables

(25)

o

\

V LBvjV,
- LB<D _-",1=:::-1--

j=1 .\, 1 R

N

IC(N-I!J~
)=1

.1"

L ~N-I)j<l> j
j=l

X \'

L C(.V_I)J<D J L C('_I)/~
-DC 1=1 + I=t

0: ROo'

= 0 at X =1-0
V

LB\jV,
<DN - ]=1 = and

RO:

at X =1

and

(24)

The boundary conditions for one clamped and one
free end, given by Eqs. (15) and (16), can be ex­
pressed in differential quadrature form as follows:

where C(N -f)j are the weighting coefficients for the
third-order derivatives along the dimensionless axis.

Those governing equations with the appropriate
boundary conditions can be solved to obtain the

natural frequencies for a single-span, curved, wide­

flange uniform beam.

v; = 0 and <I>} =0 at X = 0
N N

LA,Fj =Oand LA,j<Dj =0 at X=O+o
/=1 J=I

N

N LA(N_I)j~
C(~~N_I),<I>j + 1=1 R

5. Numerical results and comparisons

The natural frequencies of the out-of-plane vibra­

tion of a curved beam are calculated by the di­

fferential quadrature method (DQM), and the results

are presented together with existing exact solutions
and numerical solutions by the Rayleigh-Ritz and the

[mite element method (FEM).
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Table I. Fundamental frequency parameter iii for free vibra­
tion of a thin-walled curved beam with simply supported ends
including a range of grid point Nand t7, C=0.05, i5 =0. I,
and .; = 0.005.

Exact DQM
00 (Culver, N 0

1967) IxlO·2 Ix 10-4 IxlO-<i IxlO· g

7 1.0179 0.9978 0.9976 0.9976
9 1.0135 0.9939 0.9927 0.9927

15' 0.9928 II 1.0136 0.9928 0.9928 0.9928
13 1.0136 0.9928 0.9928 0.9928
15 1.0136 0.9928 0.9928 0.9928
7 0.8725 0.8474 0.8472 0.8472
9 0.8669 0.8411 0.8409 0.8409

60' 0.8410 II 0.8670 0.8413 0.8410 0.8410
13 0.8670 0.8413 0.8410 0.8410
15 0.8670 0.8413 0.8410 0.8410

Table 2. Fundamental frequency parameter iii for free vi­
bration of a thin-walled curved beam with simply supported
ends for N= II and o=lxIO-<i; 0 0 = 15'.

Exact
00 C .; i5 (Culver, DQM

1967)
0 0.9264 0.9264

0.005 0.001 0.9753 0.9753

0.05
0.1 0.9928 0.9928
0 0.7936 0.7936

0.02 0.001 0.9665 0.9665

15' 0.1 0.9926 0.9926
0 0.9913 0.9913

0.005 0.001 0.9914 0.9914

2.0
0.1 0.9929 0.9928
0 0.9909 0.9909

0.02 0.001 0.9910 0.9910
0.1 0.9926 0.9926

Table 3. Fundamental frequency parameter iii for free vi­
bration of a thin-walled curved beam with simply supported
ends forN= II and o=lx10·6

; 0 0=45'.

Exact
00 C J' D (Culver, DQM~

1967)
0 0.6243 0.6243

0.005 0.001 0.6713 0.6713

0.05
0.1 0.9202 0.9202
0 0.6142 0.6142

0.02 0.001 0.6626 0.6626

45' 0.1 0.9198 0.9198
0 0.9232 0.9232

0.005 0.001 0.9233 0.9233

2.0
0.1 0.9295 0.9295
0 0.9228 0.9228

0.02 0.001 0.9229 0.9229
0.1 0.9292 0.9292

Table 4. Fundamental frequency parameter iii for free vibra­
tion of a thin-walled curved beam with clamped ends for N =

11 and o=lxlO-<i; 0 0=15'.

Rayleigh-Ritz
00 C .; i5 solution DQM

(Culver, 1967)
0 2.2156 2.21"53

0.005 0.001 2.2600 2.2599

0.05
0.1 2.2638 2.2630
0 1.0726 1.0238

0.02 0.001 2.2557 2.2556

15'
0.1 2.2626 2.2626
0 2.2621 2.2621

0.005 0.001 2.2623 2.2625

2.0
0.1 2.2632 2.2630
0 2.2610 2.2610

0.02 0.001 2.2615 2.2514
0.1 2.2626 2.2626

Table 5. Fundamental frequency parameter iii for free vi­
bration of a thin-walled curved beam with clamped ends for
N= II and o=lxIO-<i; 00=45'.

Rayleigh-Ritz
00 C .; D solution DQM

(Culver, 1967)
0 2.0673 2.0550

0.005 0.001 2.1351 2.1316

0.05
0.1 2.2308 2.2307
0 2.0150 2.0064

0.02 0.001 2.1144 2.1111

45' 0.1 2.2303 2.2301
0 2.2254 2.2254

0.005 0.001 2.2257 2.2256

2.0
0.1 2.2314 2.2312
0 2.2245 2.2245

0.02 0.001 2.2248 2.2247
0.1 2.2308 2.2307

Table 6. Fundamental frequency parameter iii for free vibra­
tion of a thin-walled curved beam with one simply supported
and one clamped end for N = II and o=lxlO-<i; 8 0= 15' .

Rayleigh-Ritz
00 C .; i5 solution DQM

(Culver, 1967)
0 1.5027 1.5028

0.005 0.001 1.5494 1.5494

0.05
0.1 1.5568 1.5569
0 1.0033 0.9685

0.02 0.001 1.5431 1.5431

15'
0.1 1.5565 1.5566
0 1.5555 1.5557

0.005 0.001 1.5557 1.5559
0.1 1.5567 1.5569

2.0
0 1.5549 1.5550

0.02 0.001 1.5551 1.5552
0.1 1.5565 1.5566
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Table 7. Fundamental frequency parameter iii for free vibra­
tion of a thin-walled curved beam with one simply supported
and one clamped end for N= II and g=lxIO-6; 8 0=45' .

Table 10. Natural frequency OJ (rad/s) for free vibration of a
thin-walled curved beam with simply supported ends for ,"v' =
II and g= IX 10.6 neglecting rotatory inertia.

Table 9. Fundamental frequency parameter iii for free vi­
bration of a thin-walled curved beam with one clamped and
one free end for N = II and g= Ix I0.6 ; 8 0=45°

Table 8. Fundamental frequency parameter iii for free vi­
bration of a thin-walled curved beam with one clamped and
one free end for N= II and g=lxlO·6

; 8 0=15'.

0.005 0.001 0.9060

0.1 0.9733
0.05

0 0.7804

i
0.02 0.001 0.9034

I 0.1 0.9732
45'

0 0.9704

0.005 0.001 0.9719

0.1 0.9762
2.0

0 0.9703

0.02 0.001 0.9719

0.1 0.9761

80 C ~ D OQM

0 0.9676

0.005 0.001 0.9943

0.1 0.9972
0.05

0 0.9169

0.02 0.001 0.9934

15'
0.1 0.9971

0 0.9966

0.005 0.001 0.9972

0.1 0.9972
2.0

0 0.9965

0.02 0.001 0.9971

0.1 0.9971

OJ(rad / s)

80 Exact I

(Shore and Chaudhuri, 1972)
OQM

10' 16815 16795

20' 3928.1 3913.3

30' 1542.2 1536.2

40' 745.96 743.81

50' 406.78 406.01

60' 240.21 239.91

70' 150.12 149.90

80' 97.526 97.475

90' 65.219 65.195

OJ(rad / s)

80
Exact

Exact
(Culver, OQM

(Culver, 1967)
OQM

1967)
10' 10615 10614 5340.2 5339.6
20' 3130.1 3129.9 2460.8 2460.0
30' 1361.1 1361.1 1241.4 1241.3
40' 690.63 690.61 655.10 655.09
50' 387.50 387.50 373.35 373.35
60' 232.87 232.87 226.35 226.35
70' 147.01 147.01 143.74 143.74
80' 96.214 96.215 94.473 94.473
90' 64.615 64.616 63.648 I 63.64R

4~7, the quadrature solution results are found to
correlate very well with the numerical results. It is
seen that in general, the numerical results by the
DQM are lower than those by the Rayleigh-Ritz
method, and the difference of the numerical results
between the two methods decreases as C increases.
Tables 8 and 9 show the numerical results by the
DQM for the case of clamped-free ends.

The following examples are considered for more
detailed analysis. The second example has a constant
radius of curvature of 326.136 em and a variety of
opening angles with e o=10'~90'. Cross-sectional
properties of the beam are:

A (cross-sectional area) = 92.9 em", 1., = 11362em4
,

I; = 3817 em', IIY = 555878 em', and KT = 1470.85
em', Values used for the elastic modulus, shear
modulus, and mass per unit length are: E = 200.1
GN/m2

, G = 77.3 GN/m2
, and m=7.31 Nssec'lcm', The

Table II. Natural frequency OJ (rad/s) for free vibration of a
thin-walled curved beam with simply supported ends for N =

II and g =lxI0·6 including warping deformation or ne­
glecting warping deformation.

OQM

0.7820o
Dc

Rayleigh-Ritz
80 C ~ D solution OQM

(Culver, 1967)

0 1.2899 1.2731

0.005 0.001 1.3488 1.3426

0.1 1.5097 1.5096
0.05

0 1.2635 1.2480

0.02 0.001 1.3220 1.3261

45'
0.1 1.5092 1.5092

0 1.5054 1.5054

0.005 0.001 1.5056 1.5056

0.1 1.5120 1.5120
2.0

0 1.5048 1.5048

0.02 0.001 1.5050 1.5050

0.1 1.5116 1.5116
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natural frequencies, Q) (rad/s), determined by exact
solutions (Shore and Chaudhuri, 1972; Culver, 1967)
are compared with those by the DQM for the case of
both ends simply supported. The results by Shore and
Chaudhuri (1972) neglecting rotatory inertia and by
Culver (1967) neglecting warping deformations are
summarized in Tables 10 and 11, respectively. It is
also seen that excellent agreement is achieved bet­
ween the DQM solutions and the analytical solutions
for the cases of including warping or neglection
warping deformations.

Table 12. Natural frequency (r) (rad/s) for free vibration of a
thin-walled curved beam with simply supported ends for N =

11 and o=lxl0-6 neglecting both warping deformation and
rotatory inertia.

Exact FEM
80 (Shore and Chaudhuri, (Chaudhuri and DQM

1972) Shore, 1977)
75° 215.66 214.24 215.57

Table 13. Fundamental frequency parameter K= olmR' /
GK, for coupled twist-bending vibration of a curved beam
with clamped ends for N = II and o=lxlO-6 neglecting both
warping deformation and rotatory inertia.

Chaudhuri and Shore (1977) also determined the
natural frequencies of the following example using
the FEM with 39 elements for the cases of simply
supported ends, that neglected both warping deforma­
tions and rotatory inertia. The third example has a
constant radius of curvature of 254.0 em with B 0 =
75°. Cross-sectional properties of the beam are: A =

322.6 em', 1., = 17341.8 em', Iy = 4335.43 em', I; = 0,
and Kr = 11913.73 em4

. Values used for the elastic
modulus, shear modulus, and mass per unit length
are: E = 207.0 GN/m2

, G = 79.6 GN/m2
, and m=25.4

N- see2/cm2
• The natural frequencies, m(rad/s), deter­

mined by exact solutions (Shore and Chaudhuri,
1972) and by the FEM (Chaudhuri and Shore, 1977)
are compared with those by the DQM for the case of
both ends simply supported. The results are sum­
marized in Table 12. Table 12 shows that the nu­
merical results by the DQM using 11 discrete points
are more accurate than those by the FEM using 39
elements.

Ojalvo (1962) and Rodgers and Warner (1973)
studied the coupled twist-bending vibration of
curved beams using closed-form solutions of the

...--_._-_ - -_ - ----_ -..--.-_ -...-

3.0 r-------------------,

3.0r----------------,

-:

Ul

ssl

oosU06

C·uos

c=us

s c·······.. C f

U04 D

c c

U02

..;-

uo

1,0 -

2.0~

Fig. 2. Parametric results of free vibration of curved beams
with N= II and o=lxl0·6

; 8 0 = 90°, r;= 0.005, and C=0.05.

80 e Exact
DQM

(Ojalvo, 1962)
0.005 47.60 47.60

0.2 13.36 13.36
180° 0.5 6.334 6.334

1.0 3.375 3.375
1.625 2.134 2.131
0.005 3.304 3.305

0.2 1.646 1.646
270° 0.5 0.9548 0.9548

1.0 0.5776 0.5779
1.625 0.3939 0.3939
0.005 0.4540 0.4541
0.2 0.3350 0.3350

360° 0.5 0.2533 0.2533
1.0 0.1915 0.1915

1.625 0.1528 0.1528

Table 14. Fundamental frequency parameter K = ol mR' /
GK, for coupled twist-bending vibration of a curved beam
with simply supported ends for N = 11 and 0 =lxI0·6

neglecting both warping deformation and rotatory inertia.

2.0

c-c s-c .----- . C F s-s I

Fig. 3. Parametric results of free vibration of curved beams
with N = 11 and o=lxlO-6; 8 0 = 90°, r;= 0.005, and C=0.5.

Exact
80 e (Rodgers and DQM

Warner, 1973)
0.005 35.29 35.29

0.2 20.00 20.01
90° 0.5 12.00 12.00

1.0 7.200 7.200
1.625 4.800 4.800

1,0

UO U02 U04 U06 ooe Ul
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3,0r---------------~

C C s-c ._ C-F _.- s-s I

2,0

1,0

clamped (S-C), clamped-free (C-F), and simply su­
pported-simply supported (S-S) ends.

The superior computational efficiency of the DQM
over the numerical solution methods such as the finite
difference, finite element, and other approximate me­
thods is in indeed well established and has been dealt
with in detail in other works; see, for example, Malik
and Bert (1994) and Malik and Civan (1995).

UO U02 U04 UOS UOB Ul
6. Conclusions

2.0

z-i s
3.0 r----------------~

C-C --- s-c ..._.... C-F -,- s-s I

The differential quadrature method (DQM) was
used to compute the frequencies of free vibration of a
thin-walled curved beam with various nondimen­
sional parameters and boundary conditions. It can be
seen that the DQM with only a rather small number
of grid points yields numbers that compare very well
with the exact results and the Rayleigh-Ritz results.
The results by the DQM using 11 discrete points are
more accurate than those by the FEM using 39
elements.

Finally, the results have been presented for a
cantilever beam not previously considered for this
problem, and the parametric results using the DQM
are presented in dimensionless form. It is believed
that the data would be useful to the researchers for the
comparisons of their solutions in this area.

U1UOBQ06U04U02UO

1,0

Fig. 5. Parametric results of free vibration of curved beams
with N= II and 0= lx 10";; Bo = 90°,';= 0.005, and C=1.5.

Fig. 4. Parametric results of free vibration of curved beams
withN= II and o=lxIO";; Bo= 90°,';= 0.005, and C=1.0.
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2,0

c-c

C=2,0
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Nomenclature -------------­

The following symbols are used in this paper:
UO U02 U04 Q06 U08 U1

Fig. 6. Parametric results of free vibration of curved beams
with N= II and o=!xIO";; Bo = 90°, ,;= 0.005, and C=2.0.

equations of motion neglecting both rotatory inertia
and warping deformations, given by Eqs. (I) and (2),
and calculated the fundamental frequency parameters,
K= olmR4 IGK r , for the cases of both ends clamped
and simply supported, respectively. The results are
summarized in Tables 13 and 14.

Finally, parametric results using the DQM are
presented in dimensionless form in Figs. 2~6. The
examples considered here have §=0.005 and B0=900

with clamped-clamped (C-C), simply supported-

C,D

Dij

E
.f{x)

: Beam cross-sectional area;
: Weighting coefficients for the first

derivatives;
: Weightingcoefficients for the second

derivatives;
: Bimoment;
: Weighting coefficients for the third

derivatives;
: Parameters, Eq. (8);
: Weighting coefficients for the fourth

derivatives;
: Modulus of elasticity;
: General function;
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